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The possibility of using hyperspectral imaging (HSI) techniques to classify different types of

wheat kernels, vitreous, yellow berry and Fusarium-damaged, was investigated. Conven-

tional optical techniques adopted by industry for wheat grain sorting usually have too high

misclassification errors. Reflectance spectra of selected wheat kernels of the three types

were acquired by a laboratory device equipped with an HSI systemworking in near infrared

field (1000e1700 nm). The hypercubes were analysed applying different chemometric

techniques, such as principal component analysis (PCA) for explorative purposes, partial

least squares discriminant analysis (PLS-DA) for classification of the three wheat types and

interval PLS-DA (iPLS-DA) for the selection of a reduced set of effective wavelength in-

tervals. The study demonstrated that good classification results were obtained not only

considering the entire investigated wavelength range, but also selecting only three narrow

intervals of four wavelengths (1209e1230 nm, 1489e1510 nm and 1601e1622 nm) out of

121. The procedures developed could be utilised at industrial level for quality control

purposes or for the definition of innovative sorting logics for wheat kernels after an

extensive classification campaign, both at laboratory and industrial level, applied to a large

wheat sample sets.

ª 2013 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction grain vitreousness, protein content, gluten content, etc.
Wheat is one of the most important staple foods in the world,

being used as rawmaterial for breads, cakes, cookies, pastries,

crackers and pasta products. Identification of different wheat

types, at kernel level, is an important aspect for the food grain

industry all over the world, involving both sorting and/or

quality control strategies.

Quality of wheat grains is a complex phenomenon influ-

enced by several factors, genetic and/or environmental. It is

usually judged by evaluation of some parameters such as the
; fax: þ39 0644585618.
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(Sardana, 2000). The quality of both wheat kernels and related

products may be considered from different points of view,

depending on the purpose for which it is utilised.

This study focussed on the identification of three different

durum wheat (Triticum durum) types (vitreous, yellow berry

and Fusarium-damaged) posing a real industrial problem

related to the correct identification of such classes using

conventional optical techniques.

Vitreous kernels are hard, glassy, translucent and amber

coloured, whereas non-vitreous kernels appear starchy and
d. All rights reserved.
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opaque. The vitreousness of durum wheat is considered by

the wheat industry as an important quality factor, improving

cooking quality and pasta colour, and is associated with a

coarser granulation and higher protein content (Dowell, 2000).

Yellow berry durumwheat kernels affect flour quality and,

consequently, the quality of products like pasta. Yellow berry

kernels are characterised by an undesirable yellowish and soft

appearance. However, variable amounts of yellow berry ker-

nels mixed with vitreous ones are commonly accepted by the

market.

Fusarium species cause fungal diseases that affect small

grain cereals such as wheat, barley, and rye (Shahin &

Symons, 2011). In wheat, the fungus invades the spikelets,

causing kernel damage in the form of shrivelling, loss of

weight, and discolouration. The presence of Fusarium-

damaged kernels produces not only a price penalty, but also a

food safety concerns because of mycotoxins found in the

grains infected by the fungus.

With reference to the above described three wheat types

that are often mixed together in a batch, it is important to

develop an industrial sorting process, mainly to eliminate

Fusarium-damaged kernels but avoiding at the same time the

loss of yellow berry kernels that are considered acceptable

and are mixed in variable amounts with vitreous kernels for

many products. In addition, where a top wheat quality is

required, also yellow berry kernels can be selected from the

batch.

The visual inspection methods, or human-knowledge-

based methods, are subjective, sometimes inconsistent and

slow. However, chemical methods are destructive, and time

consuming (Mares, 1993; Neethirajan, Jayas, & White, 2007).

Both these approaches are thus not suitable to be applied for

on-line inspection. Optical methods are increasingly being

investigated, and extensively applied, in order to set up ac-

curate detection techniques for the identification of damaged

wheat kernels. To achieve the goal of industrial-scale on-line

inspection, multi- and hyper-spectral imaging based tech-

niques analysis have been utilised.

There has been increased interest in machine-vision-

based-technology to assess physical properties of grain

(Sapirstein & Bushuk, 1989; Shatadal, Symons, & Dexter, 1998)

promoted by many researchers who have developed com-

bined multi-spectral image acquisition, processing, and

analysis techniques with advanced classification algorithms,

to detect grain kernel characteristics, such as colour, texture,

and various types of damage (Bacci, Rapi, Colucci, & Novaro,

2002; Luo, Jayas, & Symons, 1999; Ruan et al., 2001; Zayas,

Bechtel, Wilson, & Dempster, 1994). Different detection ar-

chitectures and devices have been investigated. Symons,

VanSchepdael, and Dexter (2003) developed a machine

vision based system to classify durum wheat kernels accord-

ing to the degree of vitreousness. Wang, Zhang, Dowell, and

Pearson (2005) reached an overall correct classification of

94.83% for vitreous, non-vitreous and mottled (piebald) ker-

nels using transmitted images. Shahin, Dorrian, and Symons

(2005), through the processing of reflected and transmitted

images for vitreous kernels, reached a correctness in classifi-

cation of about 91% and 87% in the training and test set,

respectively. Several imaging devices exist on the market (e.g.

Acurum (www.acurum.dupont.com) and Cervitec (www.foss.
it)) that can measure the vitreousness of durum wheat sam-

ples. They usually perform the analysis utilising a colour

camera, performing the analysis on single grains in reflected

light.

Other advanced methods, including X-ray imaging (Haff &

Slaughter, 2004; Karunakaran, Jayas, & White, 2003) and near-

infrared (NIR) spectroscopy, have shown potential for real-

time applications. The X-ray based imaging approach is

characterised by a high risk with reference to human health

and for this reason, if in principle it is suitable for detection, it

is practically not utilised. However, NIR spectroscopy has been

more and more utilised for quality evaluation of many cereal

grains (Singh, Paliwal, Jayas, & White, 2006) including detec-

tion of insect and insect parts in whole grain and ground

samples (Baker, Dowell, & Throne, 1999; Dowell, Throne, &

Baker, 1998; Dowell, Throne, Wang, & Baker, 1999;

Maghirang, Dowell, Baker, & Throne, 2003). The NIR technique

uses the spectral differences between healthy and not-

healthy kernels caused by differences in chemical composi-

tion of healthy and damaged kernels for the discrimination.

The NIR spectroscopic based approach is affected by

drawbacks such as imprecise estimates, the need to develop

robust calibration models, preliminary processing of the

collected data and, finally, the definition and implementation

of robust classification logics. However, an imaging system

working in the NIR shows several advantages, in respect of

X-ray imaging, mainly in terms cost, simplicity, compactness

and safety (Davies, 2000; Sugiyama, 1999).

Conventional NIR spectroscopic devices are usually point-

based scanning instruments, providing only one spectrum of

the target sample without giving any information about the

distribution of the chemical composition of the sample.

Spatial information is important formonitoring of the grain as

it can be used to extract the chemical mapping of the sample

starting from the collected spectra. Such a goal could be

reached by utilising hyperspectral imaging (HSI) based

devices.

The main problem faced in sorting processes based on

optical sensors is the difficulty in the misclassification of

yellow berry and Fusarium-damaged wheat kernels. Conse-

quently, variable amounts of yellow berry kernels are rejected

along with Fusarium-damaged ones, loosing in this way some

quantities of good product with an economic loss.

Therefore, the development of an objective and non-

destructive method for fast classification of the different

wheat kernel types would be of benefit to producers, grain

handlers, wheat millers and processors (Mahesh,

Manickavasagan, Jayas, Paliwal, & White, 2008).

HSI techniques, as mentioned earlier, represent an

attractive solution for characterisation, classification and

quality control not only in the specific field of wheat grains,

but also with reference to many different materials/products

found in several industrial sectors. Recently, HSI has rapidly

emerged and is rapidly developing, especially in food inspec-

tion with a large range of investigated products, such as fruits

and vegetables, meat, fish, eggs and cereals (Del Fiore et al.,

2010; Gowen, O’Donnell, Cullen, Downey, & Frias, 2007; Sun,

2010), in pharmaceutical sector (Fortunato de Carvalho

Rocha, Post Sabin, Março, & Poppi, 2011; Gowen, O’Donnell,

Cullen, & Bellc, 2008), in medicine (Blanco et al., 2012; Jolivot,

http://www.acurum.dupont.com
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Fig. 1 e The three types of studied durum wheat samples.

1a: Vitreous. 1b: Fusarium-damaged and 1c:yellow berry.
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Vabres, &Marzani, 2011), in artworks (Kubik, 2007), in polymer

science (Gosselin, Rodrigue, &Duchesne, 2011) and in the solid

waste recycling sector (Bonifazi, Damiani, Serranti, Bakker, &

Rem, 2009; Bonifazi & Serranti, 2006; Bonifazi, Serranti, Bonoli,

& Dall’Ara, 2009; Leitner, Mairer, & Kercek, 2003; Serranti,

Gargiulo, & Bonifazi, 2011, 2012; Tatzer, Wolf, & Panner, 2005).

HSI is based on the utilisation of integrated hardware and

software architecture able to digitally capture and handle

spectra, as an image sequence. In each image of the sequence,

each column represents the discrete spectrum values of the

corresponding element of the sensitive linear array. Such an

architecture allows, with a “simple” arrangement of the

detection device (“scan line” perpendicular to the moving di-

rection of the objects) to realise a full and continuous control

(Geladi, Grahn, & Burger, 2007; Hyvarinen, Herrala, & Dall’Ava,

1998). The spatial and spectral information, obtained simul-

taneously from the investigated object, are contained in a

“hypercube”, a 3D dataset characterised by two spatial di-

mensions and one spectral dimension. Considering that in a

hyperspectral image the spectrum of each pixel can be ana-

lysed, HSI is the non-destructive technology providing the

most accurate and detailed information extraction. According

to the different wavelengths of the source and the spectral

sensitivity of the device, several physicalechemical charac-

teristics of a sample can be investigated and analysed.

Here, a HSI technique, working in the NIR range

(1000e1700 nm), coupled with chemometric analysis, was

developed and evaluated to classify different types of wheat,

vitreous, yellow berry and Fusarium-damaged, in order to

define a new method that can be implemented at industrial

level for grain quality control and/or on-line sorting.
2. Materials and methods

2.1. Wheat samples

Selected samples of three different durumwheat kernel types

were used: vitreous, yellow berry and Fusarium-damaged. An

example of the analysed samples is shown in Fig. 1, in which

the different visual features of the 3 types, according to the

description reported in Section 1, can be appreciated.

The three sample sets are representative of the grain types

that are mixed together in a wheat batch constituting the feed

of an industrial sorting process. In this process, the Fusarium-

damaged kernels must be eliminated and are therefore un-

acceptable in further treatments, such as grinding for flour

production or for use in other food products. Yellow berry

grains are acceptable with limits within vitreous grains, as

previously outlined.

The output of the process was to be one or two good

products (mixed or separated vitreous and yellow berry) and

one waste product (Fusarium-damaged wheat), according to

the final destination and use.

The three samples have been acquired by hyperspectral

imaging according to different experimental set-up, that is:

Experimental set-up 1. There was bulk acquisition of each

type. About 5 g of each samplewere selected, corresponding to

around 40 single grains. These sample sets have utilised to

build the classification model.
Experimental set-up 2. Three different and separated parallel

lines, consisting of 20e30 single seeds each, of known type,

but different from the seeds utilised to build the classification

model, were acquired and processed. In the first line was

placed the vitreous grains, in the second Fusarium-damaged

grains and in the third the yellow berry grains. This second

acquisition was carried out in order to validate the classifi-

cation model developed through the acquisition and pro-

cessing performed in the previous experimental set-up.

2.2. The hyperspectral imaging system

The HSI acquisition of the durum wheat samples was carried

out at the Laboratory for Particles and Particulate Solids

Characterisation (Latina, Italy) of the Department of Chemical

Engineering, Materials & Environment (“Sapienza” University

of Rome).

A specifically designed HSI-based platform (DV srl, Padova,

Italy) was utilised to perform all the analyses (Fig. 2). The HSI

based detection architecture allows not only static, but also

dynamic analysis so it is possible to carry out tests on particle

flow streams transported on a conveyor belt in order to

perform, at laboratory scale, on-line particle detection from a

sorting and/or quality control perspective.

The platform, in terms of hardware components, was

based on a controlled conveyor belt (width ¼ 260 mm and

length ¼ 1600 mm) with adjustable speed (variable between

0 and 50 mm s�1) (Fig. 2). Spectra acquisition was carried out

continuously or at specific time intervals. The utilised acqui-

sition system was an NIR Spectral Camera� (Specim, Oulu,

Finland), containing an ImSpector N17E� imaging spectro-

graph working in spectral range from 1000 to 1700 nm, with a

spectral sampling/pixel of 2.6 nm, coupled with a Te-cooled

InGaAs photodiode array sensor (320 � 240 pixels) with pixel

resolution of 12 bits. A diffused light cylinder source,

providing the required energy for the sensing unit, was set up.

The cylinder, internally coated with aluminium, contained

http://dx.doi.org/10.1016/j.biosystemseng.2013.01.011
http://dx.doi.org/10.1016/j.biosystemseng.2013.01.011


Fig. 2 e The hyperspectral imaging (HSI) platform e 2a): overview of the integrated HSI based architecture, 2b): detail

showing the spectral camera NIR (Specim, Oulu, Finland) and the corresponding lighting sources.
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five halogen lamps producing a continuous spectrum signal

optimised for spectra acquisition in the NIRwavelength range.

The device worked as a push-broom type of line scan

camera allowing the acquisition of spectral information for

each pixel in the line (Hyvarinen et al., 1998). The trans-

mission diffraction grating and optics provide high light

throughput and high quality and distortion-less image for the

device. The result of the acquisition was a digital image where

each column represented the discrete spectrum values of the

corresponding element of the sensitive linear array.

The device was controlled by a PC unit equipped with the

Spectral Scanner� v.2.3 (DV srl, Padova, Italy) acquisition/

preprocessing software, specifically developed to handle the

different units and the sensing device constituting the plat-

form and to perform the acquisition and the collection of

spectra. The software was designed with flexible architecture

so it could be easily integrated with new software modules

containing new characterisation and/or classification tools.
2.3. Image acquisition and calibration

Hyperspectral images of durum wheat were acquired in the

1000e1700 nmwavelength range, with a spectral resolution of

7 nm, for a total of 121 wavelengths. The spectrometer was

coupled to a 15 mm lens. The images were acquired scanning

the investigated sample line by line. The image width was

320 pixels, while the number of frames was 280.

Calibration was performed recording two images for black

and white references. The black image (B) was acquired to

remove the effect of dark current of the camera sensor,

turning off the light source and covering the camera lens with

its cap. The white reference image (W) was acquired adopting

an NPL Spectralon (ProLite Technology, Innovation Centre,
Cranfield University, Milton Keynes, London, UK) reference

sample under the same condition of the raw image. Image

correction was performed adopting the following:

I ¼ I0 � B
W � B

� 100 (1)

where I is the corrected hyperspectral image in a unit of

relative reflectance (%), I0 is the original hyperspectral image,

B is the black reference image (w0% reflectance) and W is the

white reference image (w99.9% reflectance). All the corrected

imageswere then used to perform the HSI based analysis, that

is to extract spectral information, to select the effective

wavelengths and for the final classification purposes.
3. Spectral data analysis

Spectral data analysis was carried out adopting standard

chemometric methods (Geladi et al., 2007; Otto, 1999) utilising

the PLS_Toolbox (Version 6.5.1, Eigenvector Research, Inc.,

Wenatchee, USA) running inside Matlab� (Version 7.11.1, The

Mathworks, Inc., Natick, Massachusetts, USA).

3.1. Spectra preprocessing and principal component
analysis

Firstly, the raw spectra were cut at the beginning and at the

end of the wavelength range in order to eliminate unwanted

effects due to background noise. The number of wavelengths

was thus reduced from 121 to 92 and the new investigated

interval was 1013e1650 nm.

Data were then pre-processed in order to highlight the dif-

ferences between the three wheat types. The generalised least

squaresweighting (GLSW) algorithmwas applied. It calculates

http://dx.doi.org/10.1016/j.biosystemseng.2013.01.011
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afiltermatrix basedon thedifferences betweenpairs or groups

of samples which should otherwise be similar (Martens, Høy,

Wise, Bro, & Brockhoff, 2003). Considering that hyperspectral

cameras produce a huge amount of data (the hypercubes ac-

quired in this studyhave a size of 320� 280� 92), chemometric

processing is needed for data exploration and modelling.

Therefore, after pre-processing, an exploratory analysis was

carried out applying principal component analysis (PCA) to the

spectral data (Wold, Esbensen, & Geladi, 1987). PCA com-

presses the data by projecting the samples into a low dimen-

sional subspace, whose axes (the principal components, PCs)

point in the directions of maximal variance. Looking at the

distribution of the samples in PC space it is possible to analyse

their common features and/or their grouping.

The first few principal components (PCs), resulting from

PCA, are generally utilised to analyse the common features

among samples and their grouping: samples characterised by

similar spectral signatures tend, in fact, to aggregate in the

score plot of the first two or three components. Therefore

spectra could be characterised either by the reflectance at

each wavelength in the wavelength space, or by their score on

each PC in PC space.

Samples characterised by similar spectra, that is belonging

to the same class of products (in this case wheat), are thus

grouped in the same region of the score plot related to the first

two or three PCs, whereas samples with different spectral

features will be clustered in other parts of this space.

3.2. Partial least square-discriminant analysis

PCA is a powerful method for data exploration, being able to

highlight the presence of trends or clusters among samples.

However, PCA is an unsupervised technique and it cannot be

used for building predictive model, for instance to classify

samples in one or another category: in the latter case, a

supervised pattern recognition approach should be adopted.

Partial least square discriminant analysis (PLS-DA) was

used to find a model able to perform an optimal discrimina-

tion among classes of samples and for prediction in new

images. PLS-DA is a supervised classification technique,

requiring a prior knowledge of the data (Barker & Rayens,

2003); it is used to classify samples into predefined groups by

forming discriminant functions from input variables (wave-

lengths) to yield a new set of transformed values that provides

a more accurate discrimination than any variable (wave-

length) alone. A discriminant function is then built using

samples with known groups to be used later to classify

samples with unknown group membership. Therefore, once

themodel is obtained, it can be applied to an entire hypercube,

and for classification of new hypercubes. The result of PLS-DA

applied to hyperspectral images is a “prediction map”, where

the class of each pixel can be identified using colour mapping.

The optimal dimensionality of the PLS-DA classification

model was defined using contiguous-blocks cross-validation

(10 deletion groups). The purpose of PLS-DA applied to wheat

samples was to validate their correct classification using both

all the wavelengths and the effective wavelengths selected

applying the interval PLS-DA (iPLS-DA) method (see Section

3.3). The hyperspectral image of wheat in bulk was used as

training set, while the image wheat kernels in parallel lines
was used as test set to quantitatively evaluate the predictive

ability of the calculated classification models.
3.3. Wavelength selection by interval PLS-DA

Because the extracted spectral data from wheat images are

characterised by a high degree of dimensionality with

redundancy among contiguous variables (wavelengths), a se-

lection of wavelengths was carried out, in order to facilitate

and speed up the classification of the three different wheat

classes. In this study the iPLS-DA variable selection method

was adopted (Nørgaard et al., 2000). iPLS-DA does a sequential,

exhaustive search for the best variable or combination of

variables. Furthermore, it can be operated in “forward” mode,

where intervals are successively included in the analysis, or in

“reverse” mode, where intervals are successively removed

from the analysis.

The “interval” in iPLS can be either a single variable or a

“window” of adjacent variables. iPLS-DAworks by dividing the

full-spectrum in intervals of equal width and calculating

classificationmodels for each one of these spectral regions. In

the forward-selection mode, the best interval is then chosen

as the one leading to the minimum value of the root mean

square error in cross-validation (RMSECV). Then, two-interval

models are built by adding each one of the remainder intervals

to the previously selected one. Once again, themodel showing

the lowest RMSECV value is selected and this iterative proce-

dure is repeated until no significant improvement of RMSECV

is achieved. Conversely, in the reverse-selection mode, the

intervals are iteratively removed according to a decrease

in the RMSECV value. Since this latter procedure is more

conservative than the former one, i.e. a larger number of

wavelengths is usually preserved in the final model, the

forward-selection mode was used in the present work.

In particular, forward iPLS-DA was applied to the training

image with wheat in bulk considering a window size of 4

variables (23 intervals). The same preprocessing and cross-

validation procedures used for the calculation of the PLS-DA

models on the whole signals were applied.
4. Experimental results

4.1. Spectral features of the different durum wheat
kernel types

The investigated NIR range provides chemical information

about cereal composition because most absorption bands

observed in this region arise from overtones of CeH, OeH and

NeH stretching vibrations (Moller &Munch, 2009). The average

raw NIR reflectance spectra of the three different classes of

durum wheat are reported in Fig. 3. The trough at 1200 nm is

related to the CeH second overtone, themain one at 1450 nm is

linked to the OeH and NeH first overtone and to the CeH

combination band in the aromatic ring. In Fig. 4 the pre-

processed spectra obtained after the application of the GLSW

algorithm are reported. Looking at the modified spectra, it can

be seen that the differences between the threewheat types are

highlighted after the application of the GLSW preprocessing.

http://dx.doi.org/10.1016/j.biosystemseng.2013.01.011
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Fig. 3 e Comparison between the raw NIR average reflectance spectra of the three classes of durum wheat: vitreous,

Fusarium-damaged and yellow berry.
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4.2. Explorative analysis and class definition

From the hyperspectral image of wheat, in bulk, several re-

gions of interest (ROIs) on wheat kernels, representative of

vitreous (238 pixels), Fusarium-damaged (192 pixels) and yel-

low berry kernels (200 pixels) respectively, were selected

(Fig. 5) and the corresponding spectra were arranged in a two

dimensional matrix which constituted the training set for this

investigation. Starting from the training matrix, made up of

the spectra from the selected ROIs, exploratory data analysis

was performed. The training data, pretreated as previously

described applying the GLSW algorithm, were then used to

build a PCA model for exploratory purposes.

The results obtained from the application of PCA to the

three classes of wheat kernels are reported in Fig. 6, showing

the score plot of PC1 vs PC2. The first two PCs explained 73.88%

(53.19% and 20.69%, respectively) of variance. The spectral

data of the three classes were clustered into three distinct

groups according to their spectral signatures. The procedure
Fig. 4 e Comparison between the pre-processed NIR average re

vitreous, Fusarium-damaged and yellow berry.
allows a clear discrimination to be seen between the classes of

wheat samples. In particular, it is evident that vitreous kernels

were well separated from the other two classes along the first

principal component, whereas Fusarium-damaged and yellow

berry kernels were better distinguished along PC2.

Based on these results, PCA was applied to the entire

hyperspectral image, considering that pixels with similar

spectral patterns tend to be plotted in close proximity in PCA

space they appear in similar colours in the classified/mapped

image. Score images, resulting from the PCAmodel, showed in

fact a different ability to visualise themain components of the

examined samples based on the amount of captured variance.

Since PCA performs a significant data compression, the first

score images, obtained combining the first PCs components,

allow to enhance the higher contrasts associated to the

spectral composition of the image features. Score images,

created utilising the first PCs contain, in fact, most of the

variance of the original dataset, while the next PCs score

image show less details and so on.
flectance spectra of the three classes of durum wheat:

http://dx.doi.org/10.1016/j.biosystemseng.2013.01.011
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Fig. 5 e ROI selection (pink-coloured) on the spectral images of vitreous (5a), Fusarium-damaged (5b) and yellow berry

(5c) durum wheat samples.
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In this study the first two PC score images were combined

together to form a pseudo-colour image (one score image

representing one colour channel). In fact, as was discussed

earlier, considering that the separation among the pixels

corresponding to the three classes to discriminate occurs

along the first and the second PCs, the corresponding score

image was further investigated. These results are shown in

Fig. 7 where the image background was masked and appears

white. With the only exception of some boundary effects,

linked to background removal, it can be seen that pixel col-

ouring reflects perfectly the differences between the three

classes, as already evidenced by the clear separation in

Fig. 6.

4.3. Wheat samples classification by partial least
squares discriminant analysis

A PLS-DA model was developed to discriminate between the

three classes of wheat and for prediction in new images.
Fig. 6 e PCA score plot PC1 vs PC2 using 93 wavelengths in the

durum wheat grain classes: vitreous, Fusarium-damaged and y
The PLS-DA model was calculated using the same pre-

treatment technique adopted before application of PCA

(GLSW) and the same full cross validation method.

The PLS-DA model was then used to test the recognition/

classification of the three wheat classes arranged in bulk

(experimental set-up 1) (Fig. 8) and for the three wheat classes

arranged in three parallel lines of single seeds (experimental

set-up 2) (Fig. 9), being each line respectively constituted by

vitreous (36 kernels), Fusarium-damaged (25 kernels) and

yellow berry (32 kernels).

The results were visualised in Figs. 8a and 9b, in the form

of a prediction image, i.e. of an image having the same

dimension as the original one but where pixels are coloured

according to the predicted category. Also in this case, white

pixels corresponded to the background, which was masked.

A correction was obtained in both cases for all the 3 classes,

the only errors in prediction being related to pixels corre-

sponding to the boundaries of the kernels, as shown in Figs.

8a and 9b.
whole spectral range (1006e1650 nm) related to the three

ellow berry.
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Fig. 7 e Comparison between digital image (7a) and

classification image (7b) based on the PCA applied to the

entire hypercube, as it results from the combination of the

first two PCs score images. From top to bottom: vitreous,

Fusarium-damaged and yellow berry kernels.

Fig. 8 e Prediction images based on PLS-DA model built for

the classification of wheat in bulk (see Fig. 7a) using 92

wavelengths (8a) and 12 wavelengths, respectively (8b)

(red: vitreous, blue: Fusarium-damaged and green: yellow

berry).
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4.4. Wheat samples classification after variable selection
by interval PLS-DA

Having inmind the objective of using the proposedmethod for

on-line process monitoring and/or control, the possibility of

building classification models on a reduced number of wave-

lengths appears promising as it could decrease the time

required to acquire and process each spectral image, opening

the possibility of interesting scenarios for the design, the

development and the set-up of innovative HSI based sorting

procedures of wheat grains for quality control and/or sepa-

ration purposes.

Accordingly, in the last stage of our study, this possibility

was investigated in depth. In particular, as at the industrial

level the sortingmachines require the use of fewwavelengths,

a variable selection procedure to identify the most effective

wavelengths, or better some narrow intervals, to be used for

model building was carried out. As described in Section 3.3 a

procedure based on the application of the simple but effective

iPLS-DA was adopted. The forward iPLS-DA algorithm for

variable selection led to the selection of the wavelength in-

tervals shown in Fig. 10.

The figure shows the RMSECV obtained for each interval

(with the average spectrum of all the selected pixels used as

trainingset superimposedasablack line). Thenumerical values

inside the axes along the bottom (just above the wavelengths)

indicate the number of latent variables (LVs) used to obtain the

given RMSECV. The three green intervals are the selected in-

tervals. The horizontal red dashed line indicates the RMSECV

obtained when using all variables and 5 LVs. 3 intervals of 4

variables were selected, corresponding to the wavelengths be-

tween 1209 and 1230 nm, 1489e1510 nm and 1601e1622 nm.

The PLS-DA model based only on the 3 selected intervals

obtained by iPLS-DA was then applied to the training image

(wheat in bulk) and to the image with wheat grains in parallel

lines. The results are reported in Figs. 8b and 9c, in terms of

prediction maps. It is also evident from both the figures that

accurate predictions were obtained for all the three classes

and that the few misclassifications observed were related to

pixels which are at the boundary between the kernels and the

masked background.

4.5. Comparison of the classification results

Comparing the classification results obtained using 92 and 12

wavelengths, it appears that the adopted PLS-DA model al-

lows to correctly classify the different classes of durumwheat,

in both cases. Such results can be evaluated taking into ac-

count the values of sensitivity and specificity obtained for

both classification models. Sensitivity is defined as the pro-

portion of class members correctly classified; while specificity

refers to the proportion of non-class members correctly clas-

sified. These parameters range from 0 to 1 with 1 the ideal

value for a prediction model. Good results have been obtained

as both sensitivity and specificity are between 0.94 and 0.99 in

calibration and between 0.91 and 0.99 in cross-validation for

the 92 wavelength model; for the 12 wavelengths model

sensitivity and specificity range in calibration between 0.93

and 1.00 and in cross-validation between 0.92 and 1.00.

The classification error was 0.01 (vitreous) and 0.04 (both

http://dx.doi.org/10.1016/j.biosystemseng.2013.01.011
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Fig. 9 e Source (9a) and prediction images based on PLS-DA model built for the classification of wheat in lines using 92

wavelengths (9b) and 12 wavelengths, respectively (9c) (red: vitreous, blue: Fusarium-damaged and green: yellow berry).

Fig. 10 e Selected intervals by applying the forward iPLS-DA. The y-axis represents the values of RMSECV (range: 0e1), the

x-axis represents the wavelength range (nm). The black line represents the average reflectance spectrum of all the selected

pixels used as training set. The dashed red line shows the RMSECV values obtained using all variables and 5 latent

variables. The green columns indicate the selected three effective intervals of 4 wavelengths each. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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yellow berry and Fusarium-damaged) in the first model and

0.01 (vitreous) and 0.06 (both yellow berry and Fusarium-

damaged) in the second. Such values are good and demon-

strate that not only themodel based on the entire investigated

wavelength range, but also the one based on the selected 12

“effective” wavelengths, have a strong discriminant power in

terms of wheat characteristic attribute recognition.

Comparing the results obtained for the different durum

wheat kernel types, the best classification was obtained for

vitreous class, with very lowmisclassification error (<1%), the

yellow berry class showed slightly better results than Fusa-

rium-damaged class, although in both cases the misclassifi-

cation error was low, as previously stated.
5. Conclusions

An HSI system in the NIR region was investigated to evaluate

the possibility of an objective, fast and non-destructive

method to identify different classes of wheat, with particular

reference to vitreous, Fusarium-damaged and yellow berry

kernels. Conventional methods based on optical filters pre-

sent some weaknesses, due to the very similar reflectance

characteristics of the durum wheat typologies in the visible

wavelength range. The NIR hyperspectral datawere processed

with multivariate statistical analysis methods, such as PCA,

PLS-DA and iPLS-DA, to reduce their spectral dimension and

redundancy and to extract useful image features for differ-

entiating the three wheat classes. The results demonstrated

that the classification is good, both using the full range of

wavelengths (92 wavelengths from 1013 to 1650 nm), and

selecting, through the described procedure, “only” 3 windows

of 4 wavelengths each (1209e1230 nm, 1489e1510 nm and

1601e1622 nm). Following this approach it is therefore

possible to greatly reduce the time needed to handle the

hyperspectral data. As a result is envisaged the possibility to

perform a real time monitoring of the process. The proposed

approach could thus be profitably utilised for classification

purposes and clearly shows the potentiality of NIR hyper-

spectral imaging to screen grain samples according to their

spectral information. To reach this “real time” goal further

tests will be carried out. The adoption and implementation of

such an approach could be utilised for rapid quality control

purposes and/or to realise a sorting of the products.
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